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The idea that annulation of a small ring onto benzene would Scheme 12

induce bond-length alternation by trapping out one Kékelkso- MeO OMe MeO OMe
nance structure is a provocative concept for cherhigtscyclo- \ o TBSO—oMe TBSO—T—~OMe
butabenzene (TCBBR? serves as a key model compound in this TBsoQ 29, 10 —Br e _ MeQ Br
discussion, to which cognates, such as halo-substituted derivatives 8N o/ ‘osn M“jgo o8N
Ib, Ic,34 hexamethylene derivativé,5 and triangular [4]phenylene y ores
derivativelll 5 are compared. o Y
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a2 Reagents and conditions: (4 n-BuLi, Et;O, —78 °C, 5 min; (b)
ag. KF,n-BusNCI, CH;CN, 0— 25 °C, 5 h; (c) NBS,i-Pr,NEt, CH,Cl,,
—78°C, 1 h; (d) TsCl, KCO;s, acetone, 28C, 10 h &: 48%, 4 steps); (e)
4a, n-BuLi, Et;,0, 0°C (6: 54%, syn/anti= 1.5:1); (f) Hp, Pd/C, EtOAC,
25 °C; (g) TsCl, KCOs, acetone, 25°C, 10 h {7-syn. 83%, 2 steps,
We report the syntheses of two new cognates, dodecamethoxy-7-anti: 81%, 2 steps).
TCBB 1 and hexaoxo-TCBR, via 3-fold [2 + 2] cycloadditions ) .
of benzyne and ketene silyl acetals (KSA@he present synthesis ~ 970UPS. To address this, the structuréefas determined by X-ray
overcomes numerous issues in previously reported synthesis of2Nalysis after converting to the bromotosylateconfirming that
TCBBS and uses the selectively protected 2-iodophloroglucinol the directing ability of the benzyloxy group overrides that of the

derivative3 as a novel synthetic equivalent of benztriyie Inter- four-membered ring.

mediate3 has advantages for the rapid and regioselective annulation &) alkexy directad b} strain induced © mixed system
of three fully functionalized four-membered rings asliand 2. " {akaxy vsfour membereding
EnO
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MeQel | GeMe Figure 1. Regioselectivity of substituted benzynes.

Bromotosylater was subjected to the third [2 2] cycloaddition
with KSA 4b, furnishing fully oxygenated tricyclobutabenzede
in 51% yield (Scheme 2). Amazingly, the cycloaddition was highly
regioselective, giving cycloaddu@a as the major regioisomer,

The first cycloaddition occurred by treatment of iodotrifl&fe
with n-BuLi in the presence of KSAato give a single cycloadduct,
which was converted to bromotosyldieby selective hydrolysis
of the aryl silyl ether followed by the dibromination and tosylation

(Scheme 1). The high regioselectivity of this first 2 2] along with a small amount of minor regioison®s. The structure

cycloaddition could be rationalized by the directing effect of the scheme 22

siloxy group as described befote. MeO OMe MeO OMe MeO OMe
BenzyneA, generated frond, cleanly underwent the second [2 TBSO OMe TBSO OMe TBSO OMe

+ 2] cycloaddition with KSA4a to give cycloadduct in 54% Megg%gﬁri. MeQ OMe , MeQ OTMS

yield.1® Key features of this process include the following: (1) MeO MeO OMe  MeO OMe

halogen-lithium exchange 05 exclusively occurred at the bromine Meo OTESOTS Me?sso8 s Me?ssosb deoMe

atom between the electron-withdrawing toluenesulfonate and the MeO e 5 :

benzyloxy group, generating benzyAeselectively without losing MeO OMe MeOQ OMe o Qe

the C4 bromidé? (2) highly regioselective cycloaddition gage b Mo ome | SO Tove ove

exclusively, which was interesting in its own right, as we recently T weo OMe [oMeQ ) MeQ oMe

reported that a four-membered ring also has a powerful directing Moo uoMe | M:;‘;O Meo OMe

effect in the benzyne cycloaddition (Figure'i ) he regioselectivity ! i TBSOp O o O

issues raised a question of which is the more influential directing  aReagents and conditions: (a, n-BuLi, Et,0, 0°C (8: 51% from
7-syn, 8a/8b = 6:1); (b) (MeO}CH, TsOH, MeOH, 60C (1: 51% from
T Visiting professor (Jan.-tMar. 31, 2005) on leave from University of Aah. 7-syn, 56% from7-anti, 2 steps).
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Figure 2. Molecular structure ofl.. Selected expt? [calcd¥] distances
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(A) and angles?): C;—C, 1.389(2) [1.390], &—Cs 1.396(2) [1.399], G&—

Cia 1.523(2) [1.530], 6Csa 1.529(2) [1.530], Ga—Csa 1.614(2) [1.623];
Cs—C1—C; 120.2(1) [120.0], @C—C3 119.8(1) [120.0], &—Cs—Csa

94.0(1) [94.2], G—C1—Cia 94.1(1) [94.2], G—C1a—Csa 86.0(1) [85.8],
Cs—Csa—Cia 85.7(1) [85.8].
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Figure 3. 13C NMR spectra oP (125 MHz, D,;SQ4, TMS as reference).

of 8a(syn/anti stereoisomers) was unequivocally assigned through
derivatization to the corresponding triketoBeby two-step hy-
drolysis [(i) TSOH, CHCIl,, MeOH, 25°C; (ii) BF3-Et,0, H;0,
—78— 25°C].° This high regioselectivity&a/8b = 6:1) is striking

in view of the pseudo-symmetric oxygenation pattern of benzyne
B having two four-membered rings with high symmetry, where
the difference in both rings appears to be small. Cycload8uct
could also be converted to the symmetrical hexakis(dimethyl)acetal
1 under acidic conditions.

Acetal 1 gave single crystals suitable for X-ray analysis (slow
crystallization, hexane, EtOAe; 15 °C). The central benzene ring
of 1 is planar, and the all internal angles are almost°1(#gure
2).13 The average €C bond length in the central benzene riQg
=1.394 A (exptl) [1.395 A (calcd)], and the endo/exo bond lengths
were essentially the same (endo 1.396 A/exo 1.392 A exptl) [endo
1.399 A/exo 1.390 A (calcd)Bendo-exo = 0.004 A [0.009 AJH4

Experimental/computational structures show a decrea@eaimd
0 as a function of the electronegativity of rim atomsan-1—1Ib:

Q =1.401, 1.394, 1.389 Aj = 0.023, 0.004;-0.006 A. Various
explanations exist for this effe€tNMR computations fof (146.8,
114.6, 56.3 ppm) match well the observE€ spectrum (141.0,
111.0, 51.7 ppm). Thus, structures and properties of these com-
pounds are well predicted computationally.

Hexaoxo-TCBB2 was observed for the first time by cleavage
of hexaacetal with concentrated sulfuric acif.The3C NMR in
D,SO, showed that all acetal functionalities were cleanly removed
to give quantitatively the characteristic peaks of the 1,2-dione
moiety (189 and 173 ppm) expected for ket@{d94.2 and 179.1
(calcd)I (Figure 3). Methanol (62 ppm) was generated during the
deprotection ofL.

The computationally predicted structure dfs planar with an
average benzene bond len@h= 1.402 A and a bond alternation
0 =0.002 A (exo=1.401(4) A; endo= 1.403(7) A)1417 Although
the related! with exo methylene groups displays essentially the
same average bond lengfh= 1.405 A, the bond alternatioh =
0.045(8) A (exo=1.382(1) A; endo= 1.427(9) A) is much larger.
Notable also is the longer-6C bond length between the carbonyls
of 2 (1.592 A) versus that between the methylenel ¢f..513 A).

These trends are already seen in the simple cyclobutenes and will

form the basis for a future paper.
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