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The idea that annulation of a small ring onto benzene would
induce bond-length alternation by trapping out one Kekule´ reso-
nance structure is a provocative concept for chemists.1 Tricyclo-
butabenzene (TCBB)Ia2 serves as a key model compound in this
discussion, to which cognates, such as halo-substituted derivatives
Ib , Ic,3,4 hexamethylene derivativeII ,5 and triangular [4]phenylene
derivativeIII ,6 are compared.

We report the syntheses of two new cognates, dodecamethoxy-
TCBB 1 and hexaoxo-TCBB2, via 3-fold [2 + 2] cycloadditions
of benzyne and ketene silyl acetals (KSAs).7 The present synthesis
overcomes numerous issues in previously reported synthesis of
TCBBs8 and uses the selectively protected 2-iodophloroglucinol
derivative3 as a novel synthetic equivalent of benztriyneIV . Inter-
mediate3 has advantages for the rapid and regioselective annulation
of three fully functionalized four-membered rings as in1 and 2.

The first cycloaddition occurred by treatment of iodotriflate39

with n-BuLi in the presence of KSA4a to give a single cycloadduct,
which was converted to bromotosylate5 by selective hydrolysis
of the aryl silyl ether followed by the dibromination and tosylation
(Scheme 1). The high regioselectivity of this first [2+ 2]
cycloaddition could be rationalized by the directing effect of the
siloxy group as described before.7

BenzyneA, generated from5, cleanly underwent the second [2
+ 2] cycloaddition with KSA4a to give cycloadduct6 in 54%
yield.10 Key features of this process include the following: (1)
halogen-lithium exchange of5 exclusively occurred at the bromine
atom between the electron-withdrawing toluenesulfonate and the
benzyloxy group, generating benzyneA selectively without losing
the C4 bromide;11 (2) highly regioselective cycloaddition gave6
exclusively, which was interesting in its own right, as we recently
reported that a four-membered ring also has a powerful directing
effect in the benzyne cycloaddition (Figure 1).12 The regioselectivity
issues raised a question of which is the more influential directing

groups. To address this, the structure of6 was determined by X-ray
analysis after converting to the bromotosylate7, confirming that
the directing ability of the benzyloxy group overrides that of the
four-membered ring.

Bromotosylate7 was subjected to the third [2+ 2] cycloaddition
with KSA 4b, furnishing fully oxygenated tricyclobutabenzene8
in 51% yield (Scheme 2). Amazingly, the cycloaddition was highly
regioselective, giving cycloadduct8a as the major regioisomer,
along with a small amount of minor regioisomer8b. The structure
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Scheme 1 a

a Reagents and conditions: (a)4a, n-BuLi, Et2O, -78 °C, 5 min; (b)
aq. KF,n-Bu4NCl, CH3CN, 0 f 25 °C, 5 h; (c) NBS,i-Pr2NEt, CH2Cl2,
-78 °C, 1 h; (d) TsCl, K2CO3, acetone, 25°C, 10 h (5: 48%, 4 steps); (e)
4a, n-BuLi, Et2O, 0 °C (6: 54%, syn/anti) 1.5:1); (f) H2, Pd/C, EtOAC,
25 °C; (g) TsCl, K2CO3, acetone, 25°C, 10 h (7-syn: 83%, 2 steps,
7-anti: 81%, 2 steps).

Figure 1. Regioselectivity of substituted benzynes.

Scheme 2 a

a Reagents and conditions: (a)4b, n-BuLi, Et2O, 0 °C (8: 51% from
7-syn, 8a/8b ) 6:1); (b) (MeO)3CH, TsOH, MeOH, 60°C (1: 51% from
7-syn, 56% from7-anti, 2 steps).
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of 8a (syn/anti stereoisomers) was unequivocally assigned through
derivatization to the corresponding triketone9 by two-step hy-
drolysis [(i) TsOH, CH2Cl2, MeOH, 25°C; (ii) BF3‚Et2O, H2O,
-78f 25 °C].9 This high regioselectivity (8a/8b ) 6:1) is striking
in view of the pseudo-symmetric oxygenation pattern of benzyne
B having two four-membered rings with high symmetry, where
the difference in both rings appears to be small. Cycloadduct8
could also be converted to the symmetrical hexakis(dimethyl)acetal
1 under acidic conditions.

Acetal 1 gave single crystals suitable for X-ray analysis (slow
crystallization, hexane, EtOAc,-15 °C). The central benzene ring
of 1 is planar, and the all internal angles are almost 120° (Figure
2).13 The average C-C bond length in the central benzene ringQ
) 1.394 Å (exptl) [1.395 Å (calcd)], and the endo/exo bond lengths
were essentially the same (endo 1.396 Å/exo 1.392 Å exptl) [endo
1.399 Å/exo 1.390 Å (calcd)];δendo-exo ) 0.004 Å [0.009 Å].14

Experimental/computational structures show a decrease inQ and
δ as a function of the electronegativity of rim atoms inIa-1-Ib :
Q ) 1.401, 1.394, 1.389 Å;δ ) 0.023, 0.004,-0.006 Å. Various
explanations exist for this effect.15 NMR computations for1 (146.8,
114.6, 56.3 ppm) match well the observed13C spectrum (141.0,
111.0, 51.7 ppm). Thus, structures and properties of these com-
pounds are well predicted computationally.

Hexaoxo-TCBB2 was observed for the first time by cleavage
of hexaacetal1 with concentrated sulfuric acid.16 The13C NMR in
D2SO4 showed that all acetal functionalities were cleanly removed
to give quantitatively the characteristic peaks of the 1,2-dione
moiety (189 and 173 ppm) expected for ketone2 [194.2 and 179.1
(calcd)]14 (Figure 3). Methanol (62 ppm) was generated during the
deprotection of1.

The computationally predicted structure of2 is planar with an
average benzene bond lengthQ ) 1.402 Å and a bond alternation
δ ) 0.0023 Å (exo) 1.401(4) Å; endo) 1.403(7) Å).14,17Although
the relatedII with exo methylene groups displays essentially the
same average bond lengthQ ) 1.405 Å, the bond alternationδ )
0.045(8) Å (exo) 1.382(1) Å; endo) 1.427(9) Å) is much larger.
Notable also is the longer C-C bond length between the carbonyls
of 2 (1.592 Å) versus that between the methylenes ofII (1.513 Å).
These trends are already seen in the simple cyclobutenes and will
form the basis for a future paper.
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Figure 2. Molecular structure of1. Selected exptl13 [calcd14] distances
(Å) and angles (°): C1-C2 1.389(2) [1.390], C1-C6 1.396(2) [1.399], C1-
C1A 1.523(2) [1.530], C6-C6A 1.529(2) [1.530], C1A-C6A 1.614(2) [1.623];
C6-C1-C2 120.2(1) [120.0], C1-C2-C3 119.8(1) [120.0], C1-C6-C6A

94.0(1) [94.2], C6-C1-C1A 94.1(1) [94.2], C1-C1A-C6A 86.0(1) [85.8],
C6-C6A-C1A 85.7(1) [85.8].

Figure 3. 13C NMR spectra of2 (125 MHz, D2SO4, TMS as reference).
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